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Abstract

An analysis of selfadjoint operators is presented in the frame of lorentzian
space-time of dimension 4, L4 with signature (-1,1,1,1). The type of canon-
ical operators and stress-energy tensor associated are deduced for L4.

This analysis is aimed to the physical interpretation of results gotten in
classi�cation of stress-energy tensor associated. The classi�cation imple-
mented is not thorough. It is mainly devoted to analysis and study of
most important stress energy tensors, treating them going into important
details.

Results agree classic. Classi�cation presented by Hall G S [1] and
others is reinterpreted .

It is found out (in stress-energy tensor type 2, associated to radical space
with index 2) that a �ux (by example caloric �ow) inherent to a reference
system at rest, involves a term similar to radiation scheme too.

The caloric �ux must be in the stress-energy scheme type 2.

∗With an analysis and study of canonical forms of selfadjoint operators, associated stress-
energy tensors are shown in the context of General Theory of Relativity. Some interpretations
are also shown.
†Licenciate in Physical Sciences (Universidad Complutense de Madrid; Spain)
‡Public Upper Body of Systems and Technologies in Computers and Communications (
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1 Introduction

Canonical forms of selfadjoint operators on lorentzian spaces of 4
and 5 dimensions have been dealed with a wider context in General
Theory of Relativity, by di�erents authors; by example see [3].

I am geting the invariant subspaces study step by step from most
simple cases, that is from simple eigenvectors and eigenvalues 1 dif-
ferent or multiple (usually known as eigenvectors or also radical
spaces of index 1, and eigevalues) until subspaces corresponding to
irreducible minimum polynomial of degree 2 and radical subspaces
of index 2 and 3.

Classically many people dealt with the simplest cases ( 4 eigen-
values simple di�erent or multiple), which allowed have a vision
similar to the eucledian spaces, thus facilitating the physical in-
terpretation of stress-energy tensor. However important di�erences
exist between the eucledian and lorentzian spaces arising from the
fact that lorentzian spaces can admit radical subspaces of higher in-
dex to 1, and minimum polynomials irreducible of degree 2, besides
spaces radicals of index 1 (simple eigenvalues), as in the eucledian
spaces. Consequently appear several types of stress-energy tensors
not covered in many of the classic works of General Relativity (see
[2]). Some of them are ruled out by not ful�ll the strong or weak
conditions from stress-energy tensor.

The authors who have studied the classi�cation of selfadjoint oper-
ators and the associated stress-energy tensors , have used the clas-
si�cation of Segré in large measure, spreading to lorentzian spaces
of more than 4 dimensions [3].

In this work, we proceed only in the body of the real numbers unless
otherwise speci�ed, and in the lorentzian spaces of dimension 4 and
signature (- 1.1,1,1).

This article is part of a group of articles oriented to analysis and
interpretations of stress-energy tensor in General Theory of Rela-
tivity and other topics.

1 When we speak of simple eigenvectors and eigenvalues we are concerned to invariant
subspaces of dimension 1, or to radical subspaces of index 1. It is the simplest case to study.
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1.1 Notations and symbols

Ln symbolize a n-dimensional lorentzian space , of signature (-
1,1,1,. . . ,1) ; n ≤ 4
I symbolizes null-cone.
I1 symbolizes a null straight line.
En symbolizes an n-dimensional euclidean space.

For eigenvalues and eigenvectors we use the expression simples ,
meaning radical spaces of index 1.

Vectors are shown with arrows.

Tensors are shown with boldtype cap letters.

The matrix reprsentation of a operator, tensor, or other mathe-
matical object wear paretheses ; for example (T), is the matrix
representation of tensor T.

The scalar product of two vectors ~X and ~Y is shown by g( ~X, ~Y )

where g is the metric tensor. It also is shown by ~X.~Y

2 Simple eigenvalues

It is the case corresponding to radical subspaces of index 1.

A selfadjoint operator M on a lorentzian space L4 veri�es

g(M( ~X), ~Y ) = g( ~X,M(~Y )) (1)

where ~X e ~Y are vectors of lorentzian space L4, that is ~X, ~Y ∈ L4

Minimum polinomials of these invariant subspaces have the form
:

P (M) ≡M− λiI; i = 0, . . . , 3 (2)

2.1 Simple and distinct eigenvalues

We have:

P (λi) ≡M− λiI;λi 6= λj; i, j = 0, . . . , 3 (3)

Therefore we have 4 eignvalues λi ; i=0,..,3 and 4 eigenvectors
−→
Xi,

i=0,..,3 that veri�e
M( ~Xi) = λi ~Xi (4)
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Then we attend to see speci�cally, the relevant cases of null and
nonull eigenvectors.

2.1.1 Nonull eigenvectors with di�erent eigenvalues

In this case eigenvectors are ortogonal.

g(M( ~Xi), ~Xj) = g( ~Xi,M( ~Xj))

that is
g( ~Xi, ~Xj)(λi − λj) = 0; i 6= j (5)

As eigenvalues are di�erents, that is λi 6= λj , we have g( ~Xi, ~Xj) = 0
and therefore the eigenvectors are orthogonal

2.1.2 Null eigenvectors.

The null vectors point out a fundamental di�erence between the
eucledian and lorentzian spaces. It is always necessary to devote
them special attention.

The lorentzian space or subspace ( on which operator is imple-
mented ), is null in case of one null eigenvector and remaining
eigenvectors nonull, all of them with di�erent eigenvalues, .

The demonstration is obvious.

In case of two or more null eigenvectors, within the context of
point 2.1., these would be orthogonal, therefore they constitute one
eigenvector.

The eigenvalues of these null eigenvectors must be the same. Re-
ally this part of the paragraph must be incorporate to the next.

2.2 Simple multiple eigenvectors.

In case of multiple simple eigenvalues in space or lorentzian sub-
spaces , several values λi are equal.

We write λi = λ for eigenvalues that are equal.

4



2.2.1 Simple multiple eigenvectors relationship .

In these cases λi = λj = λ, i, j ≤ n , 0 ≤ n ≤ 3.

According (5) , it is not necessary g( ~Xi, ~Xj) = 0.

That is, in this case is not necessary that eigenvectors are

orthogonal.

Let ~V =
∑
ai ~Xi remaining

−→
X i multiple eigenvectors. Then

M(~V ) = M(
∑

ai ~Xi) = λ
∑

ai ~Xi = λ~V

Therefore all vectors of space generated by the eigenvectors

are simple multiple eigenvectors.

If one of the eigenvectors is temporal, space or subspace generated is
lorentzian. It contains at least 2 null eigenvectors (is assumed that
the dimension of this space or subspace is n, 1 < n ≤ 4.

2.2.2 Null directions in case of simple multiple vectors which include
temporal vectors.

In this case all the vectors are simple multiple, and because of the
temporal subspace be generated by them, there are particularly two
or more null vectors.
In some cases each of these null vectors is orthogonal to a subspace
of 2 dimensions.
This happens in the case of operator associated with the electro-
magnetic �eld where eigenvalues are (−λ,−λ, λ, λ). In this case we
have a temporal bidimensiona lorentzian subspace L2 and 2 null
eigenvectors.

2.3 Stress-energy tensor class 1; Segré [1,111] .

A symmetrical operator is associated with an symmetric tensor. In
the case of simple eigenvalues we choose a basis of orthogonal eigen-
vectors (if the eigenvalues are simple and distinct, and not zero,
they are orthogonal; in the case of equal eigenvalues we simply an
orthogonal reference ). The eigenvalues of the symmetrical operator
M, are (−ρ, p1, p2, p3, ).
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The symetric operator M, and the metric tensor G, are represented
by the matrices:

(M) =


−ρ 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p3

 ; (G) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The associated matrix to tensor T is :
(T) = (M)(G) or (T) = (G)(M) depending on whether compo-
nents covariants or contravariants on the elements of (G).
That is to say:

(T) =


ρ 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p3


Using the tetradic formulation would:

T = ρ~U x©~U+ p1~X1 x©~X1 + p2~X2 x©~X2 + p3~X3 x©~X3 (6)

As a null real reference ( also called pseudoortonormal) we use a
base with two null vectors n and l and the other ortonormal (mak-
ing a change of basis; see Annex A); would:

T = 1
4
((p1 + ρ)( 1

α2
~l x©~l+ 1

β2~n x©~n)

+ 1
αβ
(p1 − ρ)(~l x©~n+ ~n x©~l)) + p2~X2 x©~X2 + p3~X3 x©~X3

If we think over the restriction to a tetradic frame then α = β =
√
2
2

(see Annex B); we have

T = 1
2
(p1 + ρ)(~l x©~l+ ~n x©~n) + 1

2
(p1 − ρ)(~l x©~n+ ~n x©~l)

+p2X2 x©X2 + p3X3 x©X3

This formula is equal to that obtained by other authors especially
G. S. Hall and D. A. Nesgm (1). This is the tensor that is in the
classic works of the general relativity (2). Includes perfect �uid,
electromagnetic �eld, etc. (2).
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3 Radical polinomial of index 2; type Segré [2,
11] and degenerancies.

In this case we have a minimum polynomial

P2(M) ≡ (M− λI)2

on a lorentzian space L2 verifying

P2(~X) ≡ (M− λI)2~X = ~0

for every ~X ∈ L2.

In the radical polynomial index 2 is veri�ed

(M− λI) 6= (0) ; (M− λI)2 = (0)

We construct the operator also symetric: H = (M− λI) .
For every ~X ∈ L2 is veri�ed

H(~X) = ~Y

H(~Y) = ~0
(7)

where ~Y proves to be an eigenvector itself.

3.1 ~Y is a null eigenvector.

In fact:
As H is selfadjoint.

~XH(~Y) = ~YH(~X)

and in according to 7 we have

~YH(~X) = ~Y
2
= ~XH(~Y) = 0

Therefore ~Y is a null vector besides being an eigenvector itself.

3.2 Matrix representation of operators respect a null base,
(pseudo-ortonormal).

In the lorentzian space L2 generated by vectors ~X e ~Y, we can choose
a base constituted by 2 null vectors in which ~X is a null vector but
is not an eigenvector. With the aim to use the current nomenclature
of null vectors, we make ~X ≡~l and ~Y ≡ ~n.
~l and ~n are unique null vectors de�ned by the operator.
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The matrix representation of H on the basis {~l, ~n} is

(H) =

(
0 1
0 0

)
and the matrix representation of the operator M is:

(M) =

(
λ 1
0 λ

)
Once de�ned the metric, G is

w = G(~l, ~n)

That is the scalar product of ~l.~n .
The metric tensor in L2 has the form ,with matrix covariant com-
ponents:

(G) =

(
0 w
w 0

)
and with contravariant components:

(G) =

(
0 1/w

1/w 0

)
3.3 Orthogonality of null eigenvector regard the remain-

ing invariant subspaces index 1.

The complementary invariant subspace E2 to lorentzian subspace
L2 which we are concerned, is euclidean. Let ~Xi and λi , i = 2, 3
eigenvectors and eigenvalues, at E2.
For L2 we keep the same nomenclature.
For i = 2, 3 we have

~n.H(~Xi) = λi~Xi.~n and ~n.H(~Xi) = ~Xi.H(~n) = 0

,theerefore ~n. ~Xi = 0 is derived if λi 6= 0 .
And hence the null eigenvector ~n of lorentzian space L2 is

ortogonal to eucledian space complementary to L2.

3.4 Tensor form associated to the operator.

The tensor T associated to M is ,using the matrix representation of
their covariant components

T = (M)(G) =

(
w λw
λw 0

)
(8)
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And in the matrix representation of its contravariants components

T = (G)(M) =

(
1/w λ/w
λ/w 0

)
(9)

We call stress-energy tensor of type 2 to stress-energy tensor
associated with a radical operator index 2.

3.4.1 Stress-energy tensor of type 2 respect a null base (pseudo-
ortonormal).

Let a base in L4
~l, ~n, ~X2, ~X3. On this null base the stress energy

tensor is :

T =
1

w
(~n x©~n+ λ(~l x©~n+ ~n x©~l)) + p2~X2 x©~X2 + p3~X3 x©~X3 (10)

The equation (10) is similar to that obtained by other authors (see
1).

3.4.2 Stress-energy tensor type 2 respect an ortonormal base

Using the tetradic notation, let us call U,X1,X2, and X3 vectors
of the base orthonormal in L4. Turning to a reference orthonormal
system and representing ~l and ~n as shown in annex A, we have:

T = (β
2

w
+ λ) ~X1 x© ~X1 + (β

2

w
− λ)~U x©~U + εβ

2

w
( ~X1 x©~U + ~U x© ~X1) +

p2~X2 x©~X2 + p3~X3 x©~X3

where ε = ±1 and w =
−→
l .−→n = 2αβ.

For an observer at rest would be β = α =
√
2
2

; w=1 (see Anex B):

T = (1
2
+ λ) ~X1 x© ~X1 + (1

2
− λ)~U x©~U+ ε1

2
( ~X1 x©~U+ ~U x© ~X1)

+p2~X2 x©~X2 + p3~X3 x©~X3

3.5 Relevant hints.

Among the most interesting aspects it should be noted:
a).-The strong and weak conditions of energy and temporal �ow
conditions are : ρ > 0 λ ≤ 0 and λ

4
≤ pi ≤ −λ

4
, i = 2.3, as (1) and

(3).
b).-The stress-energy tensor type 2 includes the electromagnetic ra-
diation scheme λ = 0, the �ow (caloric λ 6= 0), etc. . . . Its represen-
tation on an orthonormal basis is what would receive an observer at
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relative rest.
The stress-energy tensor scheme of of caloric �ow only has represen-
tation in stress-energy tensor type 2.
This implies that a caloric �ow has to be associated always to
a term similar to the radiation scheme, which would pos-
sibly be manifest in limit situations. The balance between the
terms similar to radiation and caloric conductivity is determined by
λ. For values of λ = 0 we have the case of radiation in a vacuum.
c).- The two (type 1 and type 2), are not reducible one another.
d).- The sum of two or more stress-energy tensors may involve to
make adjustments in the conditions weaknesses and strong of the
energy and �ow and even tuning conditions. Can occur compatibil-
ity or incompatibility of topological type (see [4]).

e).- In the radical spaces index 2 there is always a null vector ~n or~l
(as explained in point 3.1-) with eigenvalue λ. This is orthonormal

to vectors ~X2 and ~X3.

In points (b), (c) , (d) and (e) appear relevant topics to be treated
apart in other articles.

4 Radical spaces index 3 ; type Segré [3,1].

In them the operator M veri�es:

P3 ≡ (M− λI)3~X = ~0

in L3 being (M− λI)2~X 6= ~0 and (M− λI)~X 6= ~0.

We construct the operator (also selfadjoint)

H = (M− λI).

We have

H =

0 1 0
0 0 1
0 0 0


Then

M =

λ 1 0
0 λ 1
0 0 λ


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Thus for all ~X ∈ L3 , there are vectors ~Y,~Z ∈ L3 verifying:

H(~X) = ~Y

H(~Y) = ~Z

H(~Z) = ~0

4.1 Some properties.

Let the cyclic base {~X, ~Y, ~Z} . We describe below some basic prop-
erties of the index 3 lorentzian space L3.

4.1.1 ~Z is a null eigenvector.

To be H selfadjoint we have:

~Z.~Z = ~Z.H(~Y) = ~Y.H(~Z) = ~0

4.1.2 ~Y and ~Z are ortogonals.

In fact:
Likewise, as H is selfadjoint we have:

~Z.~Y = ~Z.H(~X) = ~X.H(~Z) = ~0

4.1.3 It is veri�ed:

~Y
2
= ~X.~Z

In fact:
~Y

2
= ~Y.H(~X) = ~X.H(~Y) = ~X.~Z

4.1.4 ~Y is a spacelike vector.

In fact: As ~Y is orthogonal to ~Z, it can only be spacelike or null.
The case null is discarded obviously.

4.1.5 Any vector ~X ′ generated by the cyclic base {~X, ~Y, ~Z} veri�es
H( ~X')3 = ~0 .

In fact: let
~X' = aX ~X+ aY ~Y+ aZ~Z

We have

H( ~X') = aX ~Y+ aY ~Z = ~Y'
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H( ~Y') = aX~Z = ~Z'

H( ~Z') = ~0

and hence
H( ~X') = ~Y'

H( ~Y') = ~Z'

H( ~Z') = ~0

~X', ~Y' y ~Z' verify the same properties 4.1.1 to 4.1.4 than ~X, ~Y y ~Z
; hencefor ~Y'. ~Z' = ~0 that is ~Y'.H( ~Y') = ~0 for all ~Y' = H( ~X').

4.1.6

It is veri�ed

H H

L3 99K L2 99K I1

or
L3 ⊃ L2 ⊃ I1

where L2 = H(L3) and I1 = H(L2)

4.1.7 Metric tensor associated

In the lorentzian subspace L3 (generated by (~X, ~Y, ~Z) is de�ned a
scalar product. According with this, and with the previous para-
graphs

~X
2
= a

~Y
2
= b

~Z
2
= 0

~X.~Y = c

~X.~Z = b

~Y.~Z = 0

Using the base [~X, ~Y, ~Z] , the metric is

G =

a c b
c b 0
b 0 0


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in covariant components.In contravariant components we have:

G−1 =
1

b

0 0 1
0 1 − c

b

1 − c
b

( c
2

b2
− a

b
)


The determinant of G is |G| = −b3. As the subspace L3 is timelike,
then b > 0.

4.2 Type 3 stress-energy tensor associated

We know that

H =

0 1 0
0 0 1
0 0 0


and

M = H+ λI =

λ 1 0
0 λ 1
0 0 λ


The contravariants components of stress-energy tensor in L3 are the
elements of the matrix

(T3) =
1

b

0 0 λ
0 λ 1− c

b
λ

λ 1− c
b
λ − c

b
+ ( c

2

b2
− a

b
λ)


Making ~X =~l , ~Y = ~X2 and ~Z = ~n the tensorial expression in L3 is :

T3 =
1
b
(λ(~l

⊗
~n+ ~n

⊗~l) + (( c
2

b2
− a

b
)λ− a

b
)~n
⊗
~n+ λ ~X2

⊗ ~X2

+ (1− c
b
λ)(~n

⊗ ~X2 + ~X2

⊗
~n)

Choosing a suitable base we have a=c=0 and b=1 ( that is ~n2 = 0

, ~l
2
= 0 , ~n. ~X2 = 0 , ~l. ~X2 = 0 and ~X2

2
= 1). .

On the basis {~l, ~n, ~X2, ~X3} the stress-energy tensor would:

T = λ(~l
⊗
~n+ ~n

⊗~l) + λ ~X2

⊗ ~X2 + (~n
⊗ ~X2 + ~X2

⊗
~n) + p3 ~X3

It coincides with G. S. Hall and D. A. Negm [1]. However the
reduction to particular values of a,b and c has to be done with
caution because these values depend on the structure of the operator
( or stress-energy tensor) and are not totally arbitrary. This scheme
is rejected because does not ful�l the conditions weak or strong
energy [5].
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5 Case of irreducible minimum polynomial type
Segré [w,w11] .

In this case the irreducible minimum polynomial corresponding to
a operator M, invariant in the lorentzian subspace L2, has no real
roots. In L2 this minimum polynomial is of grade 2, and his roots
are conjugated complex. The minimum polynomial on L2 is : P2 ≡
((M− aI)2 + b2I).
The purpose of our study is the equation: (M − aI)2 + b2I = 0
whose roots (M) are complex matrices. Let H = (1

b
)(M − aI) ;

hence H2 + I = (0).
It is veri�ed

(H2 + I)~X = ~0 (11)

for ~X ∈ L2.
In L2 for all ~X there is an ~Y so that H(~X) = ~Y. Hencefor

H(~X) = ~Y

H(~Y) = −~X

It is necessary and su�cient condition to ful�ll 11.

5.1 Some properties.

We have
~X

2
+ ~Y

2
= 0

That means that ~X is timelike and ~Y is spacelike ( or vice versa),

or ~X and ~Y are null vectors. We can use as a base in lorentzian
space L2 , two vectors ~X e ~Y , in principle without determining
their timelike, spacelike or nullvector nature, meanwhile we do not
de�ne a metric.

For the sake of convenience we make ~X = ~n and ~Y = ~l. These
two vectors veri�e:

H(~l) = ~n;H(~n) = −~l;

Now we have the metric: (G2) =

(
0 w
w 0

)
where ~l.~n = w y ~l

2
= 0 y ~n2 = 0

On that basis we have:

(H) =

(
0 1
−1 0

)
14



(M) =

(
a b
−b a

)
5.2 Stress-energy type 4, associated.

The covariants components of the associated tensor to M in L2 are
those of the matrix T2 = G2M ; that is:

(T2) = G2M =

(
wb wa
wa −wb

)
Making wb = σ1 and wa = 2σ0 , the stress-energy tensor respect
the null base (~l, ~n, ~X2, ~X3) is:

T = σ1(~l x©~l−~n x©~n)+2σ0(~l x©~n+~n x©~l)+p2X2 x©X2+p3X3 x©X3

(12)

in cotravariant base (~l, ~n, ~X2, ~X3). It coincides with the expres-
sion presented by G. S. Hall and D. A. Negm [1]. This scheme is
equally, in principle, rejected because of not to ful�l the conditions
weak or strong of energy [5].

6 Conclusions

In this article we have rewritten a work on classi�cation of selfad-
joint operators. The canonical forms of the selfadjoint operators are
devoloped, and the stress-energy tensors respect pseudoortonormal
and orthonormal bases are gotten. Two of the 4 canonical forms are
discarded because because of not to ful�l the weak or strong con-
ditions of energy. The stress-energy tensors we are dealing with a
pseudoortonormal base, coincide with the obtained by other authors
( [1] y [3] ) although it admit deeper interpretations.
The stress-energy tensor type 2 (the associated with the operator
type Segré [2.1,1], or with the radical space of index 2), represented
as an orthonormal base, contains a term of �ow. It is the only that
allows schemes �ows as the caloric in a rest reference frame. In
a limit case,this stress-energy tensor becomes the radiation stress-
energy tensor in vacuum.
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ANNEX

A Passage from a real null base (or semiisotrop
) to a orthonormal base and vice versa in L2

. We choose a base with the vectors ~U and ~X in L2, and other base
~l and ~n in L2 too ful�lling:

~l = al ~X+ bl ~U

~n = an~X+ bn ~U

where
~l
2
= 0 ; ~n2 = 0 ; ~l.~n = w

~X
2
= +1 ; ~U

2
= −1 ; ~X.~U = 0

from these conditions is clear:
al = εbl = α
an = εbn = β
And the equations to change basis would be:

~l = α(~X+ ε~U)

~n = β(~X− ε~U)

~X =
1

2
(
~l

α
+
~n

β
)

~U =
ε

2
(
~l

α
−
~n

β
)

being 2αβ = w y ε = ±1
α y β depend on null vectors components values ~l y ~n respect an
ortonormal reference system.
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B
Base at rest respect an observer in L2.

On this basis, the metric would have a representation matrix:

(G′2) =

(
−1 0
0 1

)

We pass from the base (~n,~l) of metric (G2) =

(
0 w
w 0

)
(where w =~l.~n) to the base at rest G'2 =

(
−1 0
0 1

)
The change of

base is determined by the equations:

~n = β(−ε~U+ ~X)

~l = α(ε~U+ ~X)
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