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Abstract

In this article we re-analyse the orthogonal endomorphisms structure.
This is because of we prove previously ( in Part I) that skew-adjoint en-
domorphism structure holds invariant in an orthogonal transformation.
After that we infer the Lorentz boost and 2-dimensional euclidian rota-
tion highlighting their geometrical structure in the context of annihilating
polynomials of the mentioned skew-adjoint endomorphisms, namely elec-
tromagnetic �eld associated endomorphisms, and orthogonal endomor-
phism as well. This has meaningful involvements inside the structure of
the base of special theory of relativity.
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1 Introduction. Part II.

In the previous paper 1, ( see [7]) it was proved that an orthogo-
nal homomorphism R preserves the skew-adjoint structures of the
skew-adjoint endomorphisms associated to the electromagnetic �elds
tensors of two observers that observe the same event from the space-
time of each one.

In the aforementioned paper ( [7] ) it was proved also that space-
times of both observers are boiled down to only one space-time.
This is because of, for the moment, the nature of the a�ne struc-
ture of the space into which are immersed the spaces-times of both
observers. Therefore we deem that R acts now as an orthogonal
endomorphism into LO. Namely R is the Lorentz transformation
2. LO is the vectorial lorentzian space-time of the observer. As a
matter of convenience henceforth we symbolize the space-time by
L4 instead of LO.

In this paper our primary purpose is the study of two types of or-
thogonal endomorphisms we select. They are the two most relevant
and meaningful types of transformations of the early stage of the
relativity theory namely Lorentz boost and 2-dimensional euclidean
rotation as well.

There are some other types of orthogonal transformations on
L4 usually identities, re�ections,etc.. and other singular or special
cases. It is worthwhile to deal with them aside.

Thereafter in Section 4 we develop the two aforementioned types
of orthogonal endomorphisms, that is to say Lorentz boost and 2 di-
mensional euclidean rotation highlighting his geometrical structure
3 �tted to the structure of skew-adjoint endomorphism F ( that is
electromagnetic �eld ) that I worked out in my paper "Structures
of the Skew-adjoint Endomorphisms and Some Peculiarities of Elec-
tromagnetic Field.(2014)" (see it in www.relativityworkshop.com or
[6]).

Outcomes we have gotten for electromagnetic case (see [6]) and
the types of orthogonal endomorphisms selected in this paper are
adapted to relativity theory we analyze here.

In this paper it is relevant to single out the known importance
of electromagnetic �eld in the theory of relativity. Poincaré inferred
Lorentz transformation searching for transformations that preserve
Maxwell equations. Einstein got it by mean other ways but de-

1This Part I, is titled "Insight into relativity theory. Part I. Critical approach. Basic
principles and starting points.

2see [7] sections 3.2 y 4.
3This is one of the more relevant contributions of this paper.
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veloped the physical meaning and interpretations of Lorentz trans-
formations. Anyway the classical relativity theory rest upon how
electromagnetic signals and interactions work.

The electromagnetic �eld is so attached to the theory of rela-
tivity that the theory of relativity is to be constructed out of the
electromagnetic �eld structure 4.

The most of physical events that are happening in the macrocosm
are for reason of electromagnetic phenomena (together other phe-
nomena as quantum phenomena, etc.. without thinking into gravity
). For this reason electromagnetic �elds penetrate deeply into the
mechanics of the physical world. We work on the basis of these
concepts.

It is worthwhile to single out that the contraction-dilatation of
space and time rest upon the measurements of electromagnetic sig-
nals, usually light signals. In an hypothetical case in which signals
could belong to other �eld -not the electromagnetic but rather other
�elds that supposedly would a�ect the most of phenomena of our
macrocosm - it is sure that we could have other theory of relativity
di�erent.

2 Condition of orthogonality.

In accordance with the Part I sections 3.1.2. and 4. we work on a
vectorial lorentzian space-time in which G = G1 = G2 as a result of
the transporter principle that we explain in Part I, section 3.2. .

Therefore the orthogonality condition of an endomorphism R be-
comes

G = RGRt

Actually R is the Lorentz transformation. We are working on
inertial reference frames taking into account that for the moment
we are �tted to the context of special relativity.

3 Invariant subspaces decomposition in skew-

adjoint endomorphisms.

Taking into account that the electromagnetic �eld F is represented
by his associated endomorphism into L4 we shall study F as an
skew-adjoint endomorphism.

4Also taking into regard several classical principles and postulates for example relativity
principle, isotropy and homogeneity of space, the timing of clocks, and so on.
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According with my paper [6] the annihilating polynomial of a
skew-adjoint endomorphism F in a lorentzian space-time is:

(F 2 − λ2I)(F 2 + µ2I) = 0

λ 6= 0 or µ 6= 0

In view of the mentioned decomposition, the orthogonal en-
domorphism R leaves invariant the same subspaces than F .
These invariants subspaces are L2 and E2. RL acts into L2 and RE
acts into E2.
RL and RE are the endomorphisms that make up R 5.

4 Orthogonal transformation. Subspaces invari-

ant in orthogonal endomorphisms.

Hereupon this paper is devoted to the analysis of the orthogonal
endomorphism R in order to derive the Lorentz transformation (
specially the Lorentz boost).

In view of the above sections, in this section we only analyse the
2-dim orthogonal endomorphism RL on L2 with minimal polynomial
PL(RL) ≡ (RL − λpI)(RL − λqI) = 0 ; ( λp 6= 0 or λq 6= 0 and λp 6=
λq) and 2-dim orthogonal endomorphism RE on E2 with minimal
polynomial PE(RE) ≡ R2

E + 2a1RE + a0I being PE(RE) irreducible
( we shall prove further along a0 = 1). For the moment we are
only interested in these two cases. Further orthogonal types are put
aside for his afterward study in other paper. We are thinking of this
orthogonal types selection abiding by our conclusions in [6]).

4.1 Case of the minimal polynomial PL(RL) ≡ (RL−λpI)(RL−
λqI) = 0 on L2 .

In this subsection we begin analysing eigenvectors and eigenvalues
of orthogonal endomorphism RL on L2, that is to say in the straight-
forward case in which the annihilating polynomial on L2 is

PL(RL) ≡ (RL − λpI)(RL − λqI), λp 6= 0 or λq 6= 0 and λp 6= λq

Therefore we have:

RL(
−→p ) = λp

−→p
RL(
−→q ) = λq

−→q
5In fact R must preserve the metric lorentzian into L2 and the metric euclidean into E2

independently.
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−→p and −→q are eigenvectors.
Because of orthogonality

RL(
−→p ).RL(

−→p ) = −→p 2 = λp
2−→p 2 (1)

RL(
−→q ).RL(

−→q ) = −→q 2 = λq
2−→q 2 (2)

RL(
−→p ).RL(

−→q ) = −→p .−→q = λpλq
−→p .−→q (3)

A solution is: −→p 2 = −→q 2 = 0 ; λp.λq = 1.
L2 is lorentzian because it has two null vectors. For this reason

we have L2 ≡ L2.
Henceforth ( inside this subsection 4.1 ) we will deal with this

solution unless otherwise speci�ed.
Summing up we have in this context two null eigenvectors of RL−→p and −→q with eigenvalues λp and λq.
In this context, on L2 the minimal polynomial of RL is

PL(RL) = (RL − λpI)(RL −
1

λp
I);λp 6=0

The matrix components of RL is

(RL) =

(
λp 0
0 λq

)
;λp.λq = 1

in the reference frame (−→p ,−→q ).

4.1.1 Deduction of Lorentz boost.

Herein we make a change of base from the base (−→p ,−→q ,
−→
Y,
−→
Z ) to

the base (
−→
U,
−→
X,
−→
Y,
−→
Z )

−→p 2 = −→q 2 = 0;−→p .−→q = w

−→
X.
−→
Y =

−→
Y.
−→
Z =

−→
X.
−→
Z =

−→
U.
−→
X =

−→
U.
−→
Y =

−→
U.
−→
Z = 0

−→p .
−→
Y = −→p .

−→
Z = −→q .

−→
Y = −→q .

−→
Z = 0

−→
X2 =

−→
Y2 =

−→
Z 2 = 1;

−→
U2 = −1

The equations of change of base are:

−→p = a(
−→
U +

−→
X)

−→q = b(−
−→
U +

−→
X)

a > 0; b < 0

( see ANNEX B.2)
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Hence the matrix components of the change of base of (−→p ,−→q )

to (
−→
U,
−→
X) is

T =

(
a a
−b b

)
The orthogonal endomorphism matrix components (on L2) on

the base (−→p ,−→q ) is

(RL) =

(
λp 0
0 λq

)
;λp.λq = 1

Changing the base from reference (−→p ,−→q ) to the base (
−→
U,
−→
X) the

components matrix endomorphism is:

(R′L) = (T−1)(RL)(T ) =
1

2ab

(
b −a
b a

)(
λp 0
0 λq

)(
a a
−b b

)
;

λp.λq = 1

Therefore

(R′L) =
1

2

(
λp + λq λp − λq
λp − λq λp + λq

)
;λp.λq = 1

We make
1

2
(λp + λq) = coshφ

1

2
(λp − λq) = sinhφ

Needless to say that (coshφ)2 − (sinhφ)2 = 1 taking into account
λp.λq = 1.

Hence the Lorentz boost transformation is

(R′L) =

(
coshφ sinhφ
sinhφ coshφ

)
Further to that we can derive the invariants of de Lorentz boost

as function of φ .
λp = coshφ+ sinhφ

λq = coshφ− sinhφ

It is derived

λp = eφ (4)
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λq = e−φ (5)

It is clear that keeping in mind that λp.λq = 1

λ2p − λ2q = 2 sinh 2φ

λ2p + λ2q = 2 cosh 2φ

It is not hard to see -reasoning likewise classical relativity-

sinhφ =
−v
c√

1− v2

c2

coshφ =
1√

1− v2

c2

where −→v is the velocity of a reference frame respect other reference

frame at rest and v =
√−→v

2
.

Thereby the invariant in the Lorentz boost are:

λp =

√√√√√1 +
v

c

1− v

c

λq =

√√√√√1− v

c

1 +
v

c

We have that the Lorentz boost involves a direction
−→
X and the

velocity −→v of reference frame in the direction
−→
X.

4.2 Case in which orthogonal endomorphisms have a sec-
ond grade irreducible minimal polynomial on E2.Euclidean
2-dim rotation.

In this subsection we continue with other case analysing the orthog-
onal endomorphism RE on E2. The annihilating polynomial of RE
that concern us is PE(RE) ≡ R2

E + 2a1RE + a0I where PE(RE) is ir-
reducible. In this way we can undertake the analysis of the rotation
on the subspace E2 after in this subsection.
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In E2 we rule out the following cases of annihilating polynomials:

PE(RE) = (RE − λ1)(RE − λ2) (6)

see 6.

PE(RE) = (RE − λ)2

On E2 we only deal with

PE(RE) = R2
E + 2a1RE + a0I

being R2
E + 2a1RE + a0I irreducible.

4.2.1 Algebraic structure of irreducible polynomial R2
E +

2a1RE + a0I.

In the following lines we shall prove:
In the annihilating polynomial

PE(RE) = R2
E + 2a1RE + a0I

( PE(RE) irreducible) if RE is orthogonal then a0 = 1.
Taking into account that

∀
−→
X,
−→
X ∈ E2;RE(

−→
X).RE(

−→
X) =

−→
X.
−→
X

R2
E(
−→
X).R2

E(
−→
X) =

−→
X.
−→
X

R2
E(
−→
X).RE(

−→
X) = RE(

−→
X).
−→
X

we have

R2
E(
−→
X).PE(RE)

−→
X =

−→
X.
−→
X + 2a1RE(

−→
X).
−→
X + a0R

2
E(
−→
X).
−→
X = 0 (7)

RE(
−→
X).PE(RE)

−→
X =

−→
X.RE(

−→
X) + 2a1

−→
X.
−→
X + a0

−→
X.RE(

−→
X) = 0 (8)

−→
X.PE(RE)

−→
X =

−→
X.R2

E(
−→
X) + 2a1

−→
X.RE(

−→
X) + a0

−→
X.
−→
X = 0 (9)

Subtracting 9 from 7 it is inferred

a0 = 1

Furthermore from 8 it is inferred

∀
−→
X

−→
X ∈ E2;

−→
X.A.

−→
X = 0 (10)

where
A = RE + a1I (11)

That means that A is skew-adjoint.
6however in section 4.3 "Types of Lorentz transformation", we shall accept λ1 = λ2 in

6 in order to de�ne de pure Lorentz transformation. In this case PE(RE) is not minimal
polynomial.
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4.2.2 Analysis of the euclidean rotation.
Euclidean feature of E2.; E2 ≡ E2.

As R2
E+2a1RE+a0I is irreducible it is not hard to check that a1 < 1.

Regarding a0 = 1 as we saw before we have

(RE) =

(
0 1
−1 −2a1

)
with respect to a cyclic base (

−→
Y,
−→
Z )

We have:
RE(
−→
Y) =

−→
Z

RE(
−→
Z ) = −

−→
Y − 2a1

−→
Z

For reason of RE is orthogonal:

RE(
−→
Y).RE(

−→
Y) = (

−→
Y)2 = (

−→
Z )2

RE(
−→
Z ).RE(

−→
Z ) = (

−→
Z )2 = (

−→
Y + 2a1

−→
Z )2

RE(
−→
Y).RE(

−→
Z ) =

−→
Y.
−→
Z = −

−→
Y.
−→
Z − 2a1

−→
Z 2

Let be now

(
−→
Y)2 = g22; (

−→
Z )2 = g33;

−→
Y
−→
Z = g23

It is derived

(G) =

(
g22 −a1g22
−a1g22 g22

)
In the base (

−→
Y,
−→
Z )

detG = g222(1− a21)) > 0

since | a1 |< 1. On the basis of Sylvester theorem we can �nd a
change of base in such a way that the new base has the metric

(G) =

(
ε 0
0 1

)
, ε = ±1

Because of the invariance of detG is to be ε = +1. Thereby E2 ≡ E2

RE ≡ RE and PE ≡ PE
7.

7E2 is in general a space of any type; we use the type symbol E2 whenever space is
euclidean; in general black bold letter means any type.
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4.2.3 Deduction of the euclidean rotation.

Let be now A1 = a1RE + I ;taking into account 10 it is clear that
PE(RE) = A.RE + A1.

We select an orthonormal base. In the 2-dim eucledian space that
concern us the skew-adjoint endomorphism A in this orthonormal
base is:

A =

(
0 b1
−b1 0

)
(12)

Therefore taking into account 10 and 12

RE = A− a1I =

(
−a1 b1
−b1 −a1

)
(13)

Taking into regard that the annihilating polynomial of R is

R2
E + 2a1RE + I = 0

we have
a21 + b21 = 1 (14)

We can make a1 = − cosϕ ; b1 = sinϕ
Thereby we have

RE =

(
cosϕ sinϕ
− sinϕ cosϕ

)
(15)

Therefore RE is a classic euclidean rotation into E2

4.3 Types of Lorentz transformations.

Once known the structure of orthogonal transformation on L4 we
can do a basic classi�cation of Lorentz transformation.

4.3.1 Mixed Lorentz boost.

Outlining foregoing sections the most general Lorentz transforma-
tion ( namely Lorentz boost and dim-2 euclidean rotation, described
above) is:

(R) =

(
(RL) (0)
(0) (RE)

)
(16)

where

(RL) =

(
coshφ sinhφ
sinhφ coshφ

)
(17)
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and

RE =

(
cosϕ sinϕ
− sinϕ cosϕ

)
(18)

We call this transformation mix Lorentz boost. It is made up
a Lorentz boost and a dim-2 eucledian rotation.

4.3.2 Pure Lorentz boost.

Herein we have

(R) =

(
(RL) (0)
(0) (IE)

)
(19)

where

(RL) =

(
coshφ sinhφ
sinhφ coshφ

)
(20)

Herein we are dealing with the case in which cosϕ = 0. Therefore
RE becomes IE. See footnote 6.

IE =

(
1 0
0 1

)
(21)

We call this transformation pure Lorentz boost. It is the
classic relativistic transformation studied in basics books of rela-
tivity. The Special Relativity Theory is constructed on the basis of
the interpretation of implications that pure Lorentz boost has in
physics.For example it involves time dilatation, space contraction,
and so on and so forth.

In the 2-dim euclidean space (let be the base (
−→
Y,
−→
Z ); herein

Y, Z ∈ E2 and make up an orthonormal base) we have:

IE(
−→
Y) =

−→
Y

IE(
−→
Z ) =

−→
Z

Then it is inferred that we are dealing with a rotation around

(
−→
Y,
−→
Z ), that is around the plane E2.

5 Conclusions

In the I Part "Insights into Relativity Theory. Part I. Critical ap-

proach . Basic principles and start points" it was proved the in-
variance of the skew-adjoint characteristic of the electromagnetic
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�eld -or rather of the endomorphism associated to electromagnetic
tensor- under orthogonal transformations , namely Lorentz transfor-
mation. The electromagnetic interactions and specially light signals
must be preserved by the mentioned orthogonal transformations.

We infer the equations of the annihilating polynomial for the or-
thogonal endomorphism. Agree on [6] the 4 dim lorentzian vectorial
space is decomposed in a 2-dim lorentzian space-time and a 2 dim
euclidean space.

In this paper we have derived the Lorentz transformations (Lorentz
boost and orthogonal euclidean 2 dim rotations) on the basis of the
analysis and study of the cited orthogonal endomorphism throwing
it in a new light.
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ANNEXES

A Some propositions about lorentzian vectorial

spaces geometry.

In this article some propositions and de�nitions necessaries to deal
with vectorial spacetime, are shown. Most of these propositions are
shown without proving since it is not the subject of this article.

As far as I know the most thorough study about lorentzian vec-
torial space is in [1], [3], and [14] .
Ln stands for a lorentzian space of signature (-1,1,....1). In the

spacetime L4 we are limited to dimension 4, signature (-1,1,1,1).
Ei i = 1, 2, 3 stands for an euclidian subspace of L4.
I1 stands for a null straight line.
Ik k = 1, 2, 3, 4 stands for a null subspace or space.

A.1 De�nitions.

Spacelike

It is easily checked that a subspace generated by orthogonal space-
like vectors , is an euclidian subspace. This euclidian subspace is
named spacelike subspace.

All his vectors are spacelike.
A subspace spacelike is euclidian.

Causal subspace

It contains timelike, spacelike and null vectors.
Null subspace

It is a subspace formed of a null vector and a subspace orthogonal
to it. Vectors of this orthogonal space are spacelike.

If the subspace orthogonal to the null vector is a 3D spacelike ,
then this is constituted by null vector and three spacelike vectors
ortogonal to it. This space is called properly null space I4

A properly null space is solely formed by one null vector and also
a subspace generated by three spacelike vectors orthogonal to the
null vector. It does not contains timelike vectors.

Vectors orthogonal to a causal subspace, are spacelike vectors.
Thereby a subspace orthogonal to a null vector is spacelike.

In a null subspace, a reference frame formed by spacelike, is mov-
ing at light speed.
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A.2 Orthogonality relations.

Two timelike vectors can not be orthogonal.
If two null vectors are orthogonal then they are proportional.

They are orthogonal to themselves.
A vector orthogonal to a timelike vector is spacelike vector. A

vector orthogonal to a null vector, is spacelike vector or null vector.
A vector orthogonal to a spacelike vector is spacelike or timelike

or null vector.
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B Concepts about referential frame at rest

respect an observer.

B.1 De�nition of reference frame at rest respect an ob-
server.

We de�ne a reference frame at rest related to an observer, as refer-
ence frame such that the matrix (Gr) of the metric tensor covariant
or contravariant components in this reference frame is:

(Gr) =


−1

1
1

1


Thereby the vectorial base of the reference frame at rest respect an
observer must be orthonormal.

B.2 Passage from the pseudo-orthonormal base to an or-
thonormal base at rest.

That is from the pseudo-orthonormal base (−→p ,−→q ,
−→
Y,
−→
Z ) to the or-

thonormal base (
−→
U,
−→
X,
−→
Y,
−→
Z )

As we saw earlier in a pseudo-orthonormal base we have:

−→p 2 = −→q 2 = 0;−→p .−→q = w;
−→
Y.
−→
Z = −→p .

−→
Y = −→p .

−→
Z = −→q .

−→
Y = −→q .

−→
Z = 0

−→
Y2 =

−→
Z 2 = 1

In the orthonormal basis (
−→
U,
−→
X,
−→
Y,
−→
Z ) we have

−→
U2 = −1;

−→
X2 =

−→
Y2 =

−→
Z 2 = 1

−→
U.
−→
X =

−→
U.
−→
Y =

−→
U.
−→
Z =

−→
X.
−→
Y =

−→
X.
−→
Z =

−→
Y.
−→
Z = 0

The passage equations are:

−→p = ap
−→
X + bp

−→
U

−→q = aq
−→
X + bq

−→
U

−→
Y and

−→
Z remain the same.

It is easily checked that:

ap = εbp = a

aq = ηbq = b
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It must be η = −ε. Then the transition equations become:

−→p = a(ε
−→
U +

−→
X)

−→q = b(−ε
−→
U +

−→
X)

Here we have −→p .−→q = 2ab = w.
To keep the orientation toward the future must be a > 0, b < 0,

ε = +1, thereby w = 2ab < 0
Then

−→p = a(
−→
U +

−→
X)

−→q = b(−
−→
U +

−→
X)
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C Notations, symbols and terminology.

Vectors are symbolized with over right arrow.
Tensors stand for bold uppercase letters.
Endomorphisms stand for normal uppercase letters.
The matrix of components of an endomorphism, tensor, etc.. is

shown closing inside parenthesis the symbol of this endomorphism,
tensor, etc.. . For example (T) stands for the matrix of components
of T. (gαβ) is a matrix whose elements are gαβ.

However for convenience we manage without parenthesis when
speci�ed.

The two vectors scalar product−→x and−→y is symbolized byG(−→x ,
−→
y)

where G is the metric tensor. Also is symbolized by −→x .−→y .
Subscripts are symbolized by lower case greek or latin letters,

saving λ and µ that are used to denote invariants.
Usually E2 symbolize a 2 dim euclidean space, L2 a 2 dim vec-

torial lorentzian space and Ln a n-dim vectorial lorentzian space.
Meanwhile we do not know if the space is lorentzian Ln or euclidean
En we symbolize these spaces with symbol Ln. In general if it is
not established if the space is lorentzian or eucledian we will use the
blackboard bold letter 8 to represent the space.
T ] is de G-adjoint endomorphism of T . T t is de transposed en-

domorphism of T .
In regard to the called endomorphism associated to a tensor it

is necessary to make clear that the components of the mentioned
endomorphism are those of the mixed components of the tensor.

8 for example L in blackboard bold letter is L.
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As far I know there are not a bibliography �tted for this paper.
But next I show some suitable publications. However, to a large
extent, I have developed my work on the basis of this bibliography.
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