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Abstract

In this article we report some results related to the electric and mag-
netic �elds in connection with the electromagnetic �eld structure on which
we contributed in the previous article �Structures of the Skew-adjoint En-
domorphisms and Some Peculiarities of Electromagnetic Field� (see [3]).

Mainly we show the electric and magnetic �eld formulation in a ref-
erence frame in relative rest and his relation with electromagnetic �eld
invariants λ and µ that we derived in the aforementioned article.
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1 Introduction

We start from the conclusions of the article �Structures of the Skew-
adjoint Endomorphisms and Some Peculiarities of Electromagnetic
Field�. See http://relativityworkshop.com/paper3.pdf. In this arti-
cle we are dealing with the electromagnetic tensor

F = λ
−→
U ∧

−→
X + µ

−→
Y ∧

−→
Z (1)

λ and µ are the invariants of the electromagnetic �eld that we �nd
in the aforementioned article 1. We search the connection among
electromagnetic invariants λ, µ, and the electric �eld E and mag-
netic �eld H to have a thorough outlook of our theory of electro-
magnetic �eld.

The physical laws in macrophysics rest upon electromagnetic
�elds together the quantum phenomena. For this reason electro-
magnetic �elds penetrate deeply into the physical world. On this
basis we think it is necessary to work out the development of a
relevant analysis on electromagnetic �elds.

In Annex A we show without proving the main outcomes of the
mentioned article �Structures of the Skew-adjoint Endomorphisms
and Some Peculiarities of Electromagnetic Field� (see [3]), in order
for gaining more comprehension reading this paper.

2 Notations, symbols and terminology

Vectors are symbolized with over right arrow.
Tensors stand for bold uppercase letters.
Endomorphisms stand for normal uppercase letters.
Subscripts are symbolized by lower case greek letters, saving λ

and µ that are used to denote invariants. Also can be symbolized
by latin alphabet letters .

The matrix of components of an endomorphism, tensor, etc.. can
be shown closing inside parenthesis the symbol of this endomorphism
, tensor, etc.. .

For example (T) can stands for the matrix of components of T.
(gαβ) is a matrix whose elements are gαβ.

The two vectors scalar product−→x and−→y is symbolized byG(−→x ,
−→
y)

where G is the metric tensor. Also is symbolized by −→x .−→y .

1λ and µ are invariants inferred from the annihilating polynomial of endomorphism asso-
ciated with electromagnetic tensor
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3 Basics

We work on the electromagnetic �eld on the basis of a lorentzian
space L4 with signature (-1,1,1,1) endowed with a metric G non
degenerated, that is
det(G) 6= 0.
F is the electromagnetic tensor and F is the endomorphism as-

sociated with this tensor.
We rest upon an orthonormal relative rest reference frame (

−→
U,
−→
X,
−→
Y,
−→
Z )

where −→
X2 =

−→
Y2 =

−→
Z 2 = 1

−→
U2 = −1

This reference frame is a reference frame in which we shall depict
the electromagnetic �eld tensor 3 and the stress energy tensor 5 in
relative rest respect an observer (see [3]), ( see also Annex B about
how is inferred this reference frame).

The matrix of components of the endomorphism associated with
electromagnetic tensor ( or the electromagnetic tensor mix compo-
nents) is:

(F β
α ) =


0 λ 0 0
λ 0 0 0
0 0 0 µ
0 0 −µ 0

 ;α, β = 0, 3 (2)

The matrix of the electromagnetic tensor covariant components
is:

(Fαβ) =


0 λ 0 0
−λ 0 0 0
0 0 0 µ
0 0 −µ 0

 ;α, β = 0, 3 (3)

The covariant dyadic form of electromagnetic tensor is:

F = λ
−→
U ∧

−→
X + µ

−→
Y ∧

−→
Z (4)

In the same reference frame, the matrix components of the endo-
morphism associated to stress-energy tensor is

(T β
α ) =


−χ2 0 0 0
0 −χ2 0 0
0 0 χ2 0
0 0 0 χ2

 (5)

where χ2 = 1
2
(λ2 + µ2)
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4 Electric and magnetic �elds formulation

It is necessary to analyse severally the relativistic formulation of

electric and magnetic �elds,
−→
E and

−→
H.

−→
E = F.

−→
U (6)

−→
H = F∗.

−→
U (7)

Using components we have:

Eα = F β
α Uβ (8)

Hα = ηαβγδUβFγδ (9)

where ηαβγδ =
√
−gεαβγδ ; ηαβγδ =

1√
−g

εαβγδ and where g =

det(G) and εαβγδ is the Levi-Civita symbol.

5 Relation among electric and magnetic �elds and

invariants

Taking into account 2 , 6 , 7, 8, and 9 :

−→
E = λ

−→
X

that is
λ = |

−→
E |

Hα = ηαβγδU
βFγδ = µηαβγδU

βYγZδ

−→
H.
−→
X = ηαβγδXαUβFγδ = µηαβγδUαXβYγZδ

and taking into regard

ηαβγδUαXβYγZδ =
√
−g

it is not hard to see −→
H = µ

−→
X

so
µ = |

−→
H|

and thereby −→
H||
−→
E
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Summing up we have:

−→
E = λ

−→
X

−→
H = µ

−→
X

λ = |
−→
E |

µ = |
−→
H|

Therefore
I1 = µ2 − λ2 = |

−→
H|2 − |

−→
E |2

I2 = µλ =
−→
H.
−→
E = |

−→
H|.|
−→
E |

where I1 and I2 are the classic invariants of the electromagnetic �elds

referred to a reference frame adapted to the base (
−→
U,
−→
X,
−→
Y,
−→
Z )

It is worthwhile to point out the impact that a change of base

has on �elds
−→
E and

−→
H.

According with 6 and 7
−→
E and

−→
H depend on

−→
U that is a com-

ponent of the reference frame (
−→
U,
−→
X,
−→
Y,
−→
Z ).

In general
−→
H and

−→
E are not invariants (since they depend on

−→
U

as we have aforementioned). However |
−→
H|2 − |

−→
E |2 and

−→
H.
−→
E are

invariant in a lorentz transformation 2.

2It is proved in many texts of general relativity. In the time being we do not attempt to
prove it. We will prove it when we deal with lorentz transformation in afterward articles.
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ANNEXES

A Geometrical structure of electromagnetic �eld

A.1 Basics

In the theory of relativity the physical magnitudes are tensorial. Ev-
ery two order tensor can be mix (besides covariant and contravari-
ant) tensor. Mix tensor is equivalent to the associated endomor-
phism. We single out the metric tensor; his associated endomor-
phism is the identity endomorphism.

Here we go into the skew-adjoint endomorphism in order to study
closely the electromagnetic �eld. Therefor we develop a study and
analysis on the base of the endomorphism associated with the skew-
adjoint tensor namely to the electromagnetic tensor (F symbolizes
the endomorphism associated to electromagnetic �eld) . On this
base we can use the annihilating polynomial of F to classify, to
structure and to give form to electromagnetic �eld.

A.2 Annihilating polynomials in a lorentzian space-time.

Following a straightforward way we begin with the analysis of in-
variant subspaces in a lorentzian space L4 constructing them out of
the usual basis of annihilating polynomials into L4 or his subspaces.
The invariant subspaces are lorentzian, euclídean or null. Thereby
�rstly my purpose is the analysis of annihilating polynomials regard-
ing annihilating minimal polynomials where relevant.

A.2.1 Study of annihilating polynomial of grade 4, of a skew-adjoint
endomorphism A in a minkowskian space L4.

The most general case of annihilating polynomial in our context of
lorentzian space L4 is:

P (F ) = F 4 + a3F
3 + a2F

2 + a1F + a0I

We have

∀
−→
X;
−→
X ∈ L4;P (F )

−→
X = 0

It is easily veri�ed

∀
−→
X,
−→
Y ∈ L4 ; g(

−→
X, P (F )

−→
Y) = 0 g(

−→
Y, P (F )

−→
X) = 0 (10)
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Adding and subtracting equations 10 , and taking into account
that F 2 and F 4 are self-adjoint endomorphisms, and that F and F 3

are skew-adjoint endomorphisms we have

∀
−→
X,
−→
Y ∈ L4 ; g(

−→
X, (F 4 + a2F

2 + a0I)
−→
Y) = 0

; g(
−→
X, (a3F

3 + a1F )
−→
Y) = 0

One can easily verify

P4(A) ≡ F 4 + a2F
2 + a0I = (0)

P3(A) ≡ (F )(a3F
2 + a1) = (0)

(11)

In this article we only will be concerned with the �rst equation
of 11.

So the annihilating polynomial is:

P4(F ) ≡ F 4 + a2F
2 + a0I = (0)

3

Summing up equation P4(F ) ≡ F 4 + a2F
2 + a0I = (0), depicts

annihilating polynomial on L4 that concern us.

A.2.2 Factorization of Annihilating polynomial on L4.

According to the foregoing sections, the goal of this article is the
examination of skew-adjoint endomorphism to investigate afterward
more closely electromagnetic �eld.

Here we are only concerned with the factorized polynomial:

P4(F ) ≡ (F 2 + ελ2I)(F 2 + ηµ2I) (12)

ε = ±1 ; η ± 1
As it is easily checked

a2 = ελ2 + ηµ2 (13)

a0 = εηλ2µ2 (14)

Further along, in other sections, we shall study the classi�cation
of annihilating polynomial P4(F ) ≡ F 4 + a2F

2 + a0I = (0) on the
basis of λ and µ.

3However that does not mean we have to rule out the second case P3(A) ≡ (F )(a3F 2+a1) =
(0). It is worthwhile to examine it aside outside this article. However henceforth we con�ne
only to the �rst equation of 11.
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A.2.3 Orthogonality relation between ker(A2 + ελ2I) and ker(A2 +
ηµ2I)

It is proved ( see [3])

λ 6= 0 or µ 6= 0 and ελ2 6= ηµ2 (15)

involves orthogonality between ker(A2 + ελ2I) and ker(A2 + ηµ2I)

with zero intersection that is L4 ≡ ker(A2 + ελ2I)
⊥
⊕ ker(A2 + µ2I).

We call regular cases to the endomorphisms that verify
15.

As complement it is worthwhile to prove : If ker(F 2+ελ2I)∩ker(F 2+
µλ2I) 6= ∅ then

λ = 0 and µ = 0 or ελ2 = ηµ2 (16)

In the following sections we analyze invariants subspaces of A,
together with their minimal polynomials when relevant.

Notice if ε 6= η it is su�cient λ 6= 0 or µ 6= 0 to verify 15 .

A.2.4 Annihilating polynomials (F 2 + ελ2I), (F 2 + ηµ2I) and their
invariant subspaces structure

.
In this stage we are in the context 15. So we begin with the case

we call regular �eld or pure �eld 4.
We only analyze cases in the context of regular case. We select

the case ε = 1 and η = −1 from which we shall constitute all other
cases in the framework of pure or regular �eld.

Summing up

L2 ≡ ker(F 2 − λ2I)
L2 has a base (−→p ,−→q ) , where −→p and −→q are null eigenvectors
of L2 with eigenvalues +λ and −λ

E2 ≡ ker(F 2 + µ2I)

E2 is not decomposable.

L4 = L2

⊥
⊕ E2

Henceforth we shall use these notations L2 and E2 for ker(F
2−λ2I)

and ker(F 2 + µ2I)

4pure �eld or regular �eld are those that ful�l the conditions itemized in previous section,
that is λ 6= 0 or µ 6= 0, and λ2 6= µ2
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This case is called pure �eld or regular case.
It is not hard to prove that all other regular cases either

are composed of cases 1) and 2) or they are incongruous in
our context.

A.3 Invariants λ and µ

.
Therefore the minimal polynomial on L4 that concerns us ( in

the regular case) is

P (F ) = F 4 + a2F
2 + a0I ≡ (F 2 − λ2I)(F 2 + µ2I)

λ and µ are functions of coe�cients of P (A) ( therefore invariants
).

Then we have the invariants

I1 = µ2 − λ2 = a2

I2 = −µ2λ2 = a0
(17)

Further along, it will be single out that the invariants λ and µ (
or I1 and I2) play a relevant role in electromagnetic �eld.

A.4 Tensorial representation of skew-adjoint endomor-
phisms

In this section we shall illustrate the tensorial applications going
into details, namely developing the tensor components in the two
reference frames we show in the following.

In an endomorphism F associated with a tensor F, the compo-
nents of endomorphism F are the mix components of a two-order
tensor F with the same basis in they both ( F and F).

As a matter of fact, the tensorial mix components F β
α and the

components of the associated endomorphism are the same (in con-
nection with the same base).

The tensorial representations involves a metric tensorG, in which
covariants components are Gαβ and contravariant components are
Gαβ.

Therefore we have

(Fαβ) = (GαλF β
λ )
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A.4.1 Tensorial representation applied to regular case (pure �eld)

We are working on L2

⊥
⊕ E2

(−→p ,−→q ) is a base on L2, and (
−→
Y,
−→
Z ) is an ortonormal base on

E2.
In this article we develop the components of tensor F in two ref-

erence frames: the mentioned (−→p ,−→q ,
−→
Y,
−→
Z ) and the (

−→
U,
−→
X,
−→
Y,
−→
Z )

where
−→p = a(

−→
X +

−→
εU)

−→q = b(
−→
X − ε

−→
U); ε = ±1

( see Annex B)

A.4.2 Reference frame (~p, ~q, ~Y, ~Z)

In L2 we rest upon the existence of the scalar product w = −→p .−→q to
de�ne the metric on L2.
In the reference frame (~p, ~q, ~Y, ~Z) the metric in L4 in covariant
components is

(Gαβ) =


0 w 0 0
w 0 0 0
0 0 1 0
0 0 0 1

 ;α, β = 0, 3

and in contravariant components

(Gαβ) =


0 1

w
0 0

1
w

0 0 0
0 0 1 0
0 0 0 1

 ;α, β = 0, 3

Agree on foregoing propositions we have −→p ,−→q ,
−→
Y,
−→
Z veri�es

−→p .−→q = w;
−→
Y2 =

−→
Z 2 = 1; −→p 2 = −→q 2 = 0

p,q ⊥ Y,Z; Y ⊥ Z

.
The physical covariant dyadic representation of the tensor F is

F = λw−→p ∧ −→q + µ
−→
Y ∧

−→
Z (18)

The electromagnetic �eld we deem here is similar to the found in
[2] if w = 1 .
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The dyadic representation of the tensor in contravariant compo-
nents is

F = −λ 1

w
−→p ∧ −→q + µ

−→
Y ∧

−→
Z ; (19)

It is interesting to point out that w appears only into the context
of covariant and contravariant components.

A.4.3 Reference frame: (~U, ~X, ~Y, ~Z)

Herein we are dealing with a reference frame associated to observer
and with the invariant subspaces of the endomorphism F (see Annex
B).

This reference frame is (
−→
U,
−→
X,
−→
Y,
−→
Z ) and constitute an orthonor-

mal base.
In this reference frame the metric tensor is

(Gαβ) = (Gαβ) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ;α, β = 0, 3

In the dyadic depiction of the tensor (in this case only for mix
tensor �eld components) we have

F = λ(
−→
U ⊗

−→
X +

−→
X ⊗

−→
U) + µ

−→
Y ∧

−→
Z (20)

This result agree to [5]
In the dyadic depiction of the tensor (in this case only for covari-

ant tensor �eld components) we have

F = λ
−→
U ∧

−→
X + µ

−→
Y ∧

−→
Z (21)

These results are similar to [6].

A.5 Electromagnetic tensor

The types of electromagnetic �eld we show in this article agree on
16. We call pure �elds to these electromagnetic �eld. Pure electro-
magnetic �eld is the case that concern us in this article.

On the base (~p, ~q, ~Y, ~Z) the electromagnetic tensor �eld with
covariant components 18 in the dyadic context is :

F = wλ−→p ∧ −→q + µ
−→
Y ∧

−→
Z

and with contravariant components 19 in the dyadic context is :

F = −λ 1
w
−→p ∧ −→q + µ

−→
Y ∧

−→
Z
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On the base (~U, ~X, ~Y, ~Z) the electromagnetic �eld mix tensor is

F = λ(
−→
U ⊗

−→
X +

−→
X ⊗

−→
U) + µ

−→
Y ∧

−→
Z

and in covariant context is
F = λ

−→
U ∧

−→
X + µ

−→
Y ∧

−→
Z

In these cases it is suitable point out λ 6= 0 or µ 6= 0.

B Concepts about referential frame at rest

respect an observer.

B.1 De�nition of reference frame at rest respect an ob-
server.

We de�ne a reference frame at relative rest related to an observer,
as reference frame such that the matrix (Gr) of the metric tensor
covariant or contravariant components in this reference frame is:

(Gr) =


−1

1
1

1


Thereby the vectorial base of the reference frame at relative rest
respect an observer must be orthonormal.

B.2 Passage from the pseudo-orthonormal base to an or-
thonormal base at rest.

That is from the pseudo-orthonormal base (−→p ,−→q ,
−→
Y,
−→
Z ) to the or-

thonormal base (
−→
U,
−→
X,
−→
Y,
−→
Z )

As we saw earlier in a pseudo-orthonormal base we have:

−→p 2 = −→q 2 = 0;−→p .−→q = w;
−→
Y.
−→
Z = −→p .

−→
Y = −→p .

−→
Z = −→q .

−→
Y = −→q .

−→
Z = 0

−→
Y2 =

−→
Z 2 = 1

In the orthonormal basis (
−→
U,
−→
X,
−→
Y,
−→
Z ) we have

−→
U2 = −1;

−→
X2 =

−→
Y2 =

−→
Z 2 = 1

−→
U.
−→
X =

−→
U.
−→
Y =

−→
U.
−→
Z =

−→
X.
−→
Y =

−→
X.
−→
Z =

−→
Y.
−→
Z = 0

The passage equations are:

−→p = ap
−→
X + bp

−→
U
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−→q = aq
−→
X + bq

−→
U

−→
Y and

−→
Z remain the same.

It is easily checked that:

ap = εbp = a

aq = ηbq = b

It must be η = −ε. Then the transition equations become:

p = a(ε
−→
U +

−→
X)

q = b(−ε
−→
U +

−→
X)

Here we have −→p .−→q = 2ab = w.
To keep the orientation toward the future must be a > 0, b < 0,

ε = +1, thereby w = 2ab < 0
Then

p = a(
−→
U +

−→
X)

q = b(−
−→
U +

−→
X)
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